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Abstract. The behaviour of the Moszkowski model within the mntext of quantum algebras 
is studied. The Moszkowski Hamiltonian is exactly diagonalized for various values of the 
deformation parameter of the involved quantum algebra. The phase hansition from a 
vibrational regime to a rotational regime is discussed in term of the q-deformation. A 
coherent state for the goound state is introduced, and the Hartree-Fock energy and the 
RPA frequencies are compared with the exact values. The meaning of the pdefomation 
in this model is discussed. 

1. Introduction 

Quantum algebras (also called quantum groups) [1-4], are recently receiving much 
attention in physics. From the mathematical point of view they are q-deformations 
of the universal enveloping algebras of the corresponding Lie algebras, being also 
concrete examples of Hopf algebras [3,4]. When the deformation parameter q is set 
equal to 1, the usual Lie algebras are obtained. Initially used for solving the quantum 
Yang-Baxter equation [5], they are now finding applications in several branches of 
physics, specially after the introduction of the q-deformed harmonic oscillator [6,7]. 
Applications in conformal field theory, quantum gravity, quantum optics [8,9] as well 
as in the description of spin chains have already appeared. In nuclear physics it 
has been found that the pairing correlations in a single-j shell can be described in 
terms of the usual q-deformed harmonic oscillator approximately [lo], or in terms 
of a generalized q-defomed harmonic oscillator [ l l ]  exactly 1121, the deformation 
parameter being related to the inverse of the size of the shell. Furthermore, rotational 
spectra of deformed [l3,14] and superdeformed [15] nuclei and also of diatomic 
molecules [16,17] have been described in terms of the q-deformed rotator having 
the symmetry suq(2). B( E2) transition probabilities in rotational nuclear bands are 
also well described by the su,(2) symmetry [18]. In addition, vibrational spectra of 
diatomic molecules have been dexribed in terms of the q-deformed harmonic [19], 
anharmonic [20,21] and generalized 1221 oscillators. The physical mntent of the 
q-deformed harmonic and anharmonic oscillators has been clarified by constructing 
wm-equivalent potentials giving the same spectrum as these oscillators [23,24]. 

From the above-mentioned developments it turns out that rotations and vibrations 
have been successfully described separately in terms of quantum algebraic symmetries. 
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It is therefore reasonable to expect that a common algebraic framework can exist for 
rotational and vibrational degrees of freedom. It is worth recalling the Moszkmki 
model [m at this point, which has an su(2) x 4 2 )  symmetry. Being a two- 
dimensional version of the Elliot model, the Moszkowski model is an exactly soluble 
model in the context of which the rotational and vibrational degrees of freedom can 
be schematically described, as well as the phase transition from the vibrational to the 
rotational regime. It is therefore reasonable to consider the q-deformed version of 
the Moszkowski model and to study the changes induced by the q-deformation on the 
properties of the model, in particular on the behaviour of the phase transition [26]. 

In section 2 of the present work, the Moszkowski model is briefly reviewed, while 
in section 3 its q-deformed version is given. In section 4 the q-analogues of the 
sv(2) Perelomov coherent states [6,27-311 are introduced and the ground-state and 
excitation energies are calculated in mean-field approximation, while in section 5 the 
numerical results are given and the comparison between the exact results and the 
mean-field treatment is presented. Finally, section 6 contains the main conclusions 
of the present nrork and plans for further developments. 

2. The M m ~ s k i  model 

The Moszkowski model is a two-level model, each of the levels being N-fold 
degenerate with N ,  particles of type a and N ,  particles of type b. The state of 
each particle is specified by the quantum numbers U = hi, taking the value +; 
in the upper level and -; in the lower level, and p ,  which refers to the particular 
degenerate state within a given level. The 4 2 )  x sv(2) Hamiltonian which describes 
the model reads 

H = c(J,(a) - J,(b))  t V ( J 2  t Ji) (1) 

where c is the energy difference between the two levels, V denotes the interaction 
strength and 

Ji = J i ( a )  + Ji(b) J z  = J," i = z ,  y, z . (2) 
i 

The quasi-spin operators J x ,  Jt and J- are defined by 

where the operators ap,+: t (b!,*;) create a particle of type a (b)  in the state p with 
U = 1 and up,*$ (bpCk) are the corresponding annihilation operators. 
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The operators .It, J -  and J ,  satisfy the usual 4 2 )  commutation relations 

[J.+(i),J-(j)l = 2Jz( i )6 i j  

[Jz(i),J*(j)] = i , j  = a , b .  
(4) 

Since 

[ H , J , ( a )  t J,(b)l = [H,J,l = [H,Jzl = 0 

the Moszkow&i Hamiltonian is exactly diagonalized in the basis 

The physical behaviour of the present system is controlled by the Moszkowski 
parameter X = NIVl /c;  X = 0 corresponds to the vibrational limit and X = 05 

to the rotational limit. 

3. The deformed Moszkwski model 

The su,(2) quasi-spin operators Jt, J- and J ,  satisfy the commutation relations 
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As in the non-deformed case, the following commutation relations hold: 

[ H q . J r l  = [H,,C,z(a)l = [H,,C,z(b)l = o  
and, therefore, H ,  can be diagonalized in the basis 

4. Mean-field approximation 

We introduce the coherent state defined by 

(12) 
ak p' 

--JJ:(a)J!.(b)lO) I 'u(a,P)) = exp,[aJ+(a) t PJ-(b)IlO) = [k]! [ E ] !  
k,l 

where 10) = l j a , - j a ; j b , j b ) .  The state IQ(a,P))  is not normalized. The Hartree- 
Fock ground state is obtained by minimizing 

with respect to a, a' and 0, p'. The equations 

have two types of solutions according to the value of the parameter of the model A: 
(a) a = p = 0 for all values of A .  This corresponds to the nondeformed solution. 
@) a = ao, p = Po for A greater than a critical value A,. When this solution exists, 

it corresponds to a lower energy state than the previous one and, therefore, the 
system chooses this deformed state. 
In figure 3 the broken curves represent the Hartree-Fock energy, for different 

values of the q-parameter 

h = E,(a,,Po). (15) 

The time-dependent Hartree-Fock equations are obtained from the Lagrangian 

or, introducing the canonically conjugated variables 8, i&*, P ,  i p ,  defined as 

& = a  p p  P = P  pp 
aa* (17) 



The q-deformed Moszkowsld model: RPA modes 899 

we can write 

In (17) Frm( a) is given by 

with 

F(n,2j,,aa") = n=0,1,2 ,... . 
[k]![2j ,  - k]! k 

Similar expressions are considered for particles of the type b. In terms of the new 
variables the expectation values of the operators J ,  ( U) and J ,  ( b )  have the form 

(19) J Z ( a )  = -- Na + a*& Jz(b)=-2--pb.  N b  2 
The expectation values of the operators J,(a) and J + ( b )  cannot be expressed in a 
closed form and, in the first order, they are given by 

J++(u) = &I&* J-(u) = (204 

J+(b)  = f i b  J - (b )  = f ip. 
In the previous expressions, the following notation has been used: 

We will now study the response of the system when small perturbations around 
the equilibrium state are allowed. In the deformed phase we write 

a = a o ( l +  ?) P = Po(l+ E )  (214 

a = ?  @ = E .  (21b) 

where ao, Po correspond to the equilibrium values and, for the non-deformed phase, 

In both cases, 
The time evolution of the coordinates 7, E can be determined by using the least- 

action principle, with the Lagrangian given by (16). Expanding L in powers of ?, ?*, 
E ,  E * ,  and, introducing the canonical variables G, i,fj', E ,  ip, defmed as 

and E are small time-dependent quantities. 

?j = ?ma = Emb (22) 

where Ni = Fio(a,) - (F~o(~o))2, (i = u,b) ,  we obtain, for the second-order 
Lagrangian, 

(U) i 
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Figure 1. Difference behveen the - energies of two consecutive ex- : H' o.40;1 ,,...... , . . . . . , , cited band states versus in J,, the in same the case rotational X = 

2.0, foi different values of the de. 
formation parameter. q = exp(s). 

0.00 12.00 18.00 (Full curve: B = 0.0, broken 
cume: real s (s = 0.2) and dotted 
c m :  imaginary s (s = 0.1Zi). 

,,,..,. ... 0.20 
......... 

~ ......... 
I _ -  . , .  . .  

0.00 6.00 

5 

where 

and A and B are 2 x 2 real and symmetric matrices. 
The eigenfrequencies and the eigenvectors describing the time evolution of a 

mean-field state slightly deviating from the equilibrium state can be obtained by 
solving the RPA-type equation 

where X and Y stand for the column matrices 

x =  (z)  Y = ( f : )  

and i2 are the RPA frequencies. 
The RPA ground-state energy, EReA [33] is given by 

ERpa = E,+ I(f2, + n,) - iTrA. 

5. Numerical results 

In tigues 1 and 2 we represent, respectively for X = 2.0 and X = 0.02, the difference 
between the energies of two consecutive excited states in the same rotational band as 
a function of J, and for different values of the deformation parameter, q = exp(s) 
(full curve: s = 0.0, broken curve: real s (s = 0.2) and dotted curve: imaginary 
s (s = 0.12i)). For s = 0.0 this spacing grows linearly in the rotational regime 
( A  = 2.0). or stays almost constant in the vibrational regime (A = 0.02). However, 
for a finite s nonlinear effects are introduced. If s is real, the spacing between 
two consecutive levels in the same band increases with s (broken curve); however 
the opposite effect is present for s imaginary: the spacing decreases with s (dotted 
curve). 
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Flgure 3. Ground-state energy 
versus N V j c  for different values 
of the deformation parameter, 
q = exp(8). From top to bottom, 
imaginary s (s = O.IZi), s = 0.0 
and real s (s = 0.2), respectively. 
The full cume corresponds to the 
exact value, the broken curve to 
EHP and the circles to ER~A.  
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In figure 3 we show the ground-state energy as a function of N V / c  for different 
values of the deformation parameter. We have considered N,, = N ,  = 20 and 
c = 0.1. Curves for s = 0.0, real s and imaginary s are displayed. It is seen that 
the ground-state energy decreases as q increases, for real values of s (lower set of 
curves); this suggests that an attractive residual interaction is simulated by the q- 
deformation. On the other hand, when q is a phase (imaginary s), the ground-state 
energy increases with q (upper curve); we conclude that now a repulsive interaction 
is introduced by the q-deformation. We also observe a good agreement between the 
exact results (full curves) and the EWA (circles) obtained from (24). 

We have also investigated the RPA frequencies and the corresponding exact 
excited-state energies as a function of Nl’/c. We show the results obtained in 
figures 4 and 5 for the same choice of parameters concerning figure 3. Two solutions 
exist corresponding to two types of excitations, namely (i) E,( J ,  = 1) - Eo( J ;  = 0) 
(lower curve) and (ii) E,( J,  = 0) - Eo( J ,  = 0) (upper curve). In the deformed 
phase the exact solution (i) is very small and the corresponding RPA frequency is 
zero. This happens because the RPA ground state is not an eigenstate of J s ,  but 
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Figure 4. Excitation energy of the 
fust excited state as a function of 
N V f c  for s = 0.0 (full cuwe: 
exact resulc broken curve: RPA 
approximation). 

5 ,  

0.00 
-1.50 -1.00 -0.50 0.00 Figure 5. As in figure 4, for 

Nv/c s = 0.2. 

[ H n  , J,] = 0. The second exact excited state (i) in the non-deformed phase is well 
interpreted as a two-phonon state. In both cases, a clear phase transition from a 
predominantly rotational behaviour to a vibrational one is identified; we also remark 
that the phase transition occurs for smaller values of X as s increases. On the other 
hand, for an imaginary s, the phase transition is observed for larger values of X as 
s increases. This is seen in figure 6 ,  where we represent the exact excitation energy 
for transitions of the type (i), with imaginary s. 

We a h  note that the RPA results follow very closely the corresponding exact 
values; this is a clear indication that the mean-field treatment of the problem based 
on the coherent state introduced in (12) is adequate to study the present q-deformed 
model. 

The usual mean-field and RPA methods describe the dynamics of the system which 
is obtained as the result of the expansion of the sup(2) operators in powers of 
conventional (non-deformed) boson operators. 
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Figure 6. Exad excitation energy 
of the fist  excited state (for 
transitions of the type (i)) as a 
function of N V l c  for imaginary 
values of 8. Full cuwe: s = 0.0, 
broken curve: s = 0.06i and 
dotted c u m :  8 = 0.12i. 

I / ,  1 
0.02 

.. .. 
0.00 

-1.50 -1.00 -0.50 0.00 

NV/c 

6. Conclusions 

In this paper the qdeformed version of the Moszkowski model has been considered 
and the changes caused on the properties of the model by the qdeformation have 
been studied, using the usual mean-field and RPA methods. It has been found that 
the q-deformation simulates an attractive residual interaction, while the phase transi- 
tion from the vibrational to the rotational behaviour occurs for smaller values of the 
Moszkowski parameter X as q increases, in agreement with the findings of 1341. On 
the other hand, when q is a phase (s imaginary) the effect of the q-deformation corre- 
sponds to the introduction of a repulsive residual interaction and the phase transition 
deviates now for larger values of X as q increases. The mean-field and RPA approx- 
imate results are found to be in good agreement with the exact ones, indicating that 
the coherent states introduced are adequate for studying the dynamics of the model. 

The study of the q-deformation of other exactly solvable models is also of 
interest. Another model showing a phase transition is the Lipkin model [35] and its 
generalizations (for a review see [36]). Quanrwn-deformations of algebraic collective 
models being able to sucessfully describe the experimental data, as the interacting 
boson model (IBM) [37] (for overviews see [38,39]) should also be studied, since 
they might allow for improvements in cases in which certain inadequacies appear. A 
first step in this direction has been taken in [40], where the q-deformation of the 
vibrational limit of a toy version of the IBM having a U(3) overall symmetry has been 
studied. Work in these directions is in progress. 
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